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We consider the two-phase flow of a suspension in a rotating cylinder with inclined 
endplates for which inertial and viscous effects are small. It is shown that, when the 
Coriolis force is dominant, flow in the core is essentially unaffected by geometry. If 
a fluid particle can make a complete circuit about the rotation axis, the sedimentation 
velocity cannot be augmented by geometrical effects as it can in gravitational 
settling. However, with the insertion of a complete meridional barrier to block 
movement around the centre, separation becomes more sensitive to the shape of the 
container walls. In this case, behaviour similar to that in a gravitational field is 
possible once again. 

1. Introduction 
Centrifugal. separation of a two-phase fluid is an important process with many 

industrial applications. After a century of empirical developments, modern centrifuges 
work very well, and this is a credit to engineering practices because neither the 
separation nor the flow of a two-phase fluid is really understood in satisfactory 
detail. Design improvements are still possible, and for this reason a better under- 
standing of the process is of great significance. 

In  recent investigations of separation based on two-phase flow theory (Greenspan 
1983; Ungarish & Greenspan 1984) the motion of a mixture in a long axisymmetric 
rotating cylinder was considered. In  the present work we examine the potential for 
enhancing separation by geometrical modifications of the container, namely the 
inclination of the endcaps and a meridional barrier. 

Improved separative performance is achieved in gravitational settlers by inclining 
the walls of the container with respect to the direction of the gravitational field. This 
is known as the ‘Boycott effect ’ (most recently analysed by Acrivos & Herbolzheimer 
1979, where other important references are cited). Enhanced sedimentation, driven 
by the formation of a pure-fluid layer near the downward-inclined wall as shown in 
figure 1, can be regarded as a result of the increase in the surface area available for 
creating particle-free fluid. (This is the interpretation most easily generalized to 
describe centrifugal separation.) In  circumstances typical of many problems, the 
instantaneous settling rate turns out to be proportional to the horizontal projection of 
the interfacial area between the pure fluid and the mixture. However, this interesting, 
purely kinematic conclusion is of little use without a dynamic understanding of the 
flow field that allows determination of the interface. The detailed analysis of 
Probstein, Yung & Hicks (1977) shows that the pure (lighter) fluid zone is a thin 
boundary layer on the downward inclined wall. The purified fluid in this layer is set in 
a fast upward convective motion by the hydrostatic pressure in the adjacent heavier 
mixture. Volume conservation requires a corresponding downward flux in the 
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Upward-inclined wall 

FIGURE 1. Gravity-settling in a container with inclined walls. 

Outward-inclined lid 
4" 

FIGURE 2. Centrifugal separation in a cylindrical container with inclined lids. 

mixture bulk, which, in turn, carries the dispersed particles with a velocity that is 
considerably larger than the conventional terminal settling velocity in the quiescent 
fluid. 

One might expect the flow in a rotating container whose lids are inclined with 
respect to the direction of the centrifugal force (figure 2) to be similar to that in the 
abovementioned example of gravitational settling. However, to our knowledge, no 
convective augmentation of settling in a rotating container has been observed, except 
for flows in very narrow gaps, where viscous effects prevail throughout as discussed 
by Bark & Johansson (1982). There are basic reasons for this interesting dissimilarity. 

In  the typical systems considered by Probstein et al. (1977), Hill, Rothfus & Kun 
(1977), Acrivos & Herbolzheimer (1979) and Schneider (1982), the momentum 
balance in the mixture bulk is mainly between buoyancy and pressure, while inertial 
and viscous forces are important only in thin boundary layers. As a consequence, the 
flow of the mixture is primarily controlled by the requirements of kinematic 
continuity and compatibility with the boundary conditions. This provides a strong 
connection between the geometry of the boundaries and the basic flow that underlies 
the enhanced gravitational settling that we call the Boycott effect. Moreover, the 
volume fraction of the mixture remains constant throughout the duration of the 
settling process, and the geometry essentially affects only the velocity of the mixture. 

The flow observed in the cylindrical rotating system considered here is different, 
even though the inertial and viscous forces in the mixture domain are also small in 
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comparison with that due to buoyancy. First of all, the volume fraction a cannot 
be a constant in a centrifugal force field. More importantly, the Coriolis acceleration 
strongly couples the dynamics with the kinematics. For example, the radial mass flux 
in an axisymmetric cylinder is severely restricted because the pressure gradient can 
have no azimuthal component. Flow between source and sink is then via non-divergent 
Ekman layers at the endwalls which are supported by an interior motion that is, 
essentially, an inviscid vortex. However, the insertion of a complete meridional 
barrier dramatically alters the motion. In particular, an azimuthal pressure gradient 
is now available to counteract the corresponding non-zero component of the Coriolis 
acceleration, which is proportional to the radial velocity. The barrier prevents 
azimuthal motion and produces a radial momentum balance once again between 
buoyancy and pressure terms, in close resemblance to the situation for gravitational 
settling. The flow of the mixture in a sectioned cylinder can then exhibit a 
considerable convective augmentation of settling due to an inclination of the 
endwalls. 

2. Equations of motion 
Consider the time-dependent motion of a mixture of two incompressible constitu- 

ents. The dispersed phase consists of small particles (or droplets) of approximately 
constant radius a* and occupies the volume fraction a. The averaged flow variables 
of the continuous and dispersed phase are denoted by subscripts C and D, while a 
variable of the mixture is unsubscripted (e.g. the densities p;, p$ and p*, where 
p* = (1 - a) p$ +a& ; an asterisk designates a dimensional variable). 

Let q* = u*P+v*9)+w*t be the fluid velocity in a cylindrical coordinate system 
rotating with constant angular velocity sZ* around the z-axis and letj* = ($, jg, j:) 
be the corresponding volume flux. (Some useful kinematic relations for velocities and 
fluxes are given in the Appendix.) 

The primary variable of the process under consideration is the relative velocity 
q;tl( = q;5 -4:). A reasonable formula for qg is based on the drag-buoyancy balance 
and the assumptions that the local drag on a small particle is approximated by Stokes’ 
law and that the effective viscosity of the fluid depends only on the local volume 
fraction a. Therefore 

q;tl = $sZ*r*f(a) P, (2.1) 

where 

v* is the kinematic viscosity of the fluid and lima+,, f ( a )  = 1. 
The dimensionless parameter /3, a modified Taylor number, measures the ratio of 

the particle size to the thickness of the Ekman layer, or equivalently the ratio of the 
Coriolis force and Stokes drag on a particle. Rotational effects may strongly affect 
the drag on a particle for /3 moderate or large; the following analysis is restricted to 
small values of /3. (We note in passing that the investigations of Herron, Davis & 
Bretherton (1975) and Karafilian k Kotas (1981) have shown the validity of (2.1) 
in the limit of one particle, for small B.) The function f (a)  accounts for the small-scale 
interaction between the fluid and particles, and (according to Ishii & Chawla 1979), 
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where aM is the maximal-packing volume fraction. This particular choice is not 
essential in what follows. 

Introduce dimensionless variables obtained by scaling the velocities by I E 1 BQ*r,*, 
the typical value of I qg I ; lengths by r;, the outer radius of the cylindrical container; 
time by ( I E 1 PQ*)-' and density by &. The equations of continuity are then 

aa 
-+V*j, at = 0, (2.4) 

V - j  = 0. (2.5) 

The rotational acceleration terms are readily incorporated in the averaged equations 
of motion as developed, for instance, by Ishii (1975). If, for definiteness, the stress 
term is assumed to be that of a constant-viscosity Newtonian fluid, then the 
dimensionless momentum equation for the mixture is 

( 1  +€a)  (zi, 4+ls lP[~+iV(4 .4 )+(V  x 4 )  X I ] ]  

1 S 
- - -- V P  + - a?-? + E[$ v(v ' 4) - v x (v x q) ]  - I E I pv a (a( 1 - a)  qR qR), (2.6) P P  

2 and ? are unit vectors and p* is the effective viscosity coefficient of the mixture. 
The last term in (2.6) arises from the diffusion of momentum due to the relative 
motion; here (2.8) can be used to replace qR'qR in the square brackets. The Ekman 
number E, which measures the relative importance of viscous forces compared with 
the Coriolis acceleration, is assumed small. The volume fraction a is regarded as an 
O(1)  variable, and the value of I E I will be considered later. It has been assumed that 
/3 is small, but i t  is important to keep in mind that, although I qR'? 1 is O( I), the order 
of magnitude of the scaled velocity components remains to be calculated. In any case, 
the momentum-diffusion term in (2.6) can be ignored because its only (radial) 
component is much smaller than the buoyancy term, even for large I E I .  

Using the dimensionless form of (2.1 ) , 

qR = sf(.) r f ,  (2.8) 

and the kinematic relations listed in the Appendix, we find that 

jD = aj+ s$(a) r?, (2.10) 

(2.11) 

where &a) = 4 1  -4fW 
The substitution of (2.10) in (2.4) and (2.5) yields the simplified form of the equation 
for the volume fraction 

(2.12) 6a l a  
-+j*Va+s-- [#(a)r2]  = 0. 
at r ar 
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Further reduction of the momentum equation is necessary for progress. To this end, 
the inertial terms are assumed negligibly small. This imposes certain restrictions on 
E and /3 which will be discussed shortly. The solution of the remaining system, which 
is still a formidable task, is facilitated by boundary-layer theory in which the flow 
field is separated into inviscid and viscous domains. 

Motion in the boundary layer is extremely complicated because in many cases of 
interest the nonlinear terms are important. Even the appropriate forms of the 
averaged equations and boundary conditions for two-phase rotating boundary layers 
are uncertain in some circumstances (Ungarish & Greenspan 1984). However, some 
insight can be gained by making reasonable assumptions about the boundary-layer 
flow. 

Motion in the inviscid interior is of principal interest, and there, if inertial terms 
are truly small, the momentum equation (2 .6)  reduces to a balance between Coriolis, 
pressure and buoyancy terms : 

1 S 
2( I + €a) 2 x q = - - VP+ - rap. (2.13) 

The main task is to solve for the mixture flow field as described by the system 
(2.11)-(2.13). The motion of the dispersed phase can then be obtained from (2.9) or 
(2 .10) .  The boundary conditions on the flow will be discussed later. As initial 
conditions, i t  is assumed for simplicity that a t  t = 0 the mixture occupies the whole 
container, with a constant volume fraction a, and is in a state of rigid rotation, i.e. 
q = 0. 

Preliminary to a detailed analysis, we note that a = constant 4 0 does not satisfy 
(2 .12) ,  which does, however, have in the limit a+O the particular space-independent 
solution, a = aI exp ( - 2 s t ) .  This illustrates an important feature of the centrifuga! 
process, namely that significant separation occurs in an 0(1) time period when the 
heavier component is squeezed out of the mixture. In addition to the ‘squeezing’ 
mechanism, separation takes place via complete disengagement, that is, in the 
formation of a purified region of the continuous phase that is separated from the 
mixture bulk by a surface of discontinuity or kinematic shock. Only the latter 
mechanism is significant in typical gravitational settling. 

Since centrifugal separation is intrinsically a function of the radial motion, 
enhancement of the disengagement rate requires uD or P * j ,  to be large. In view of 
(2 .9)  and (2 .10) ,  this means that the radial velocity and volume flux of the mixture 
should be at least comparable to the sedimentation speed. Consequently, special 
attention must be paid to u (orj,.) in the subsequent analysis. In this respect flows 
in cylinders with and without meridional barriers (figure 3 )  are different and these 
configurations are considered separately. 

P B  

3. Axisymmetric containers 

figure 3 (a),  for which the momentum equations are supposedly 
Consider the linear ‘ inviscid ’ flow within the axisymmetric container shown in 

l a p  

P a r  P 
-2(1  + E O ~ ) V  = -- -+- ra, 

2(1+Ea)u = 0, (3 .2)  
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FIGURE 3. Cross-section of the cylindrical container: (a )  axisymmetric 
configuration ; (a) with complete meridional barrier. 

Equation (3.1) indicates that a rapid azimuthal motion develops. During the 
separation process the heavier phase concentrates near the outer periphery, and, 
because the relative azimuthal motion between the phases is negligible (see (2.1)), 
conservation of angular momentum requires a backward rotation in the mixture with 
v = O(l/B). However, for an azimuthal velocity of this magnitude, the inertial terms 
in the momentum equation can be neglected only if I E I Q 1. Therefore a formal 
linearization procedure for symmetric configurations requires expansions in powers 
of E ,  in which case the lowest-order theory would be (3.1)-(3.3) with E = 0. 

Equation (3.2) and an order-of-magnitude analysis of the inertial terms in the 
azimuthal equation show that in fact u = O( I E  I ). According to (2.9), the radial 
velocity of the dispersed phase is then nearly equal to the slip (or drift) velocity, 
uD x ~(l-a)f(a)r .  

Since the radial velocity of the mixture is O( I E I ) in an axisymmetric container, 
the settling velocity cannot be increased by an interior circulation. This conclusion 
is made irrespective of the boundary conditions, i.e. the inclination of the lids has 
little influence on the flow or particle-settling velocity in the inviscid core when the 
Coriolis force is important. An equivalent statement is that the pure-fluid layer 
adjacent to the inclined walls away from which particles are driven, does not remain 
thin, in contrast with the corresponding region near the downward-inclined wall in 
gravitational settling (figure 1).  

It is noteworthy that addition of the linearized momentum equations yields 

2 [2v+B s ra] = 0, 
a2 

(3.4) 

which is similar to the thermal-wind equation in stratified rotating fluids. 

the interior, which allows the reduction of (2.12) to 
The continuity equation implies that u and w are equally and negligibly small in 

The solution of this equation, obtained by the method of characteristics, is 
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along (3.7) 

Y‘ where, at time t = y ,  a = ay at r = ry, z = z 
In  the particular case when a = a, is a constant it follows that subsequently 

a = a(t) in the separating region. This corresponds in the limit I sl+O to the 
similarity solution given by Greenspan (1983). However, in that work the radial 
volume flux density j r  is identically zero as a consequence of the similarity 
assumption, whereas in the present case the radial momentum balance only constrains 
this quantity to be small, O( I E I ). 

Ekman boundary layers on the inclined walls are required to adjust the large 
azimuthal velocity of the core to the boundary conditions. This complex interaction, 
which will be described elsewhere, depends crucially on the value of h = ( f i / H ) / I  E I p, 
i.e. the ratio of the separation and spin-up times (H is the characteristic height of 
the container). When h is not large the major conclusions stated above are unaffected 
by the secondary boundary-layer flow. 

The analysis becomes quite complicated when the condition of axial symmetry is 
relaxed but the container allows a particle to make a complete circuit about the 
rotation axis. Some progress can be made by considering azimuthal averages of the 
flow-field variables, defined by 

I rzn 

Averaging eliminates the terms that contain derivatives of 8, and we deduce from 
(2.6) that (u)  = O(E) .  Consequently the averaged ‘Boycott effect’ must also be 
negligibly small. 

This analysis, based as it is on the assumption 1 E I Q 1, does not completely reject 
the possibility of a convective enhancement of separation for larger values of the 
density parameter. On the other hand, this is unlikely because the retrograde 
azimuthal velocity of the mixture increases with I E 1, thereby reducing considerably 
the effective centrifugal ‘gravity’ [Q*( 1 + 1 E I /3v)Iz. Improved separation can be 
obtained in the parameter range I E I = O( 1) by obstructing the azimuthal motion of 
the mixture with a meridional barrier. This configuration is discussed next. 

4. Meridionally sectioned containers 
Consider a cylindrical container divided by a complete meridional barrier at 8 = 0, 

as shown in figure 3 (b). (The extension to several barriers is straightforward.) Since 
the azimuthal motion of the mixture is obstructed, it is anticipated that the radial 
velocity component is 0(1), with v = O(1) at most. Hence the nonlinear terms in the 
momentum equations are O( I E I /?), and because B is small the restriction required 
on E in $3 can be relaxed to la1 = O(1). This suggests the expansion 

f(r, t )  = f,P, t )  +/ff1(r, t )  + * ’ * 
for each of the dependent variables. 

The substitution of the expansions in (2.5), (2.12) and (2.13) with E = 0 yields 
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aa0 i a  
at T aT 

-+ jo -Vao+s - -  [r2$(ao)] = 0, 

1 ap, 
2(1+€ao)uo = ---, 

r ae 
0 = --, ac 

aZ 

(4.3) 

(For higher-order terms (2.6) should be used instead of (2.13). Additional terms should 
also be included in the relative-velocity formula (2.1).) 

Equation (4. l),  which expresses the hydrostatic balance of buoyancy and pressure, 
implies 

with a. = ao(t) as an important special case. 
As expected, the azimuthal component of the pressure gradient balances the 

Coriolis term in (4.5). Moreover, the pressure is z-independent, and from (4.4), (4.6) 
and (4.7) a generalized ‘thermal-wind’ equation is obtained : 

a, = %b-,t), (4.7 1 

a 
a Z  
- {2[ (1 + €aO( r ,  t ) ]  vo + esra,} = 0. 

Equations (4.7), (4.3) and (2.11) imply that, when a. genuinely depends on T ,  

uo = ~ o ( r ,  t ) ,  j r o  = j ro ( r ,  t ) .  (4.9) 

In  the special case a. = ao(t) (4.3) decouples from the system because the second 

~0 = uO(r, 8, t ) ,  j r o  = j r o ( r ,  6,  t ) .  (4.10) 

Consequently the radial motion is always z-independent, but in this special situation 
there can be an azimuthal variation. 

The azimuthal slip velocity of the dispersed particles is small and the volume $us 
in the boundary layer on the barrier is presumed insignificant. The appropriate 
boundary conditions are then those for an impermeable wall : 

v0 = 0 at 0 = 0 , 2 ~  (4.11) 

These allow for some simplification if we again consider the azimuthally averaged 
flow variables, as defined by 

term is identically zero, and it  follows that 

For example, the average of (4.2) is 

Integration yields 

(4.12) 

(4.13) 

(4.14) 

where the last term depends on the boundary conditions. Note that, when a. depends 
on T as well as on t ,  (j,J = j r o  in view of (4.9). 
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FIQURE 4. The geometry of conical inwardly inclined lids. 

Appropriate boundary conditions on the cylindrical walls and inclined lids must 
now be given. For definiteness, let E > 0, so that the dispersed phase is heavier than 
the continuous phase and a sediment layer of thickness # ( 8 , z ,  t )  forms at the outer 
cylindrical wall. The volume$ux within it will be assumed negligibly small, which means 
that 

j - n  = 0, (4.15) 

at F(r,  8, z, t )  = r -  1 +S = 0, with n = VF. The substitution of this equation in 
(2.10) and the fact that a, = a,(r, t )  imply that n*j,  is not a function of 8 or x on 
the surface S. Therefore the thickness of the sediment layer on the cylindrical outer 
wall depends on time only: 8 = # ( t j .  

The sediment layer that forms on the inward inclined lid is also assumed to be thin. 
It follows that j . n  = 0 on these walls, where n is the appropriate normal vector. For 
the geometry shown in figure 4 this becomes 

(4.16) 

and jro+jzo coty = 0 on z = +B+( l - r )  tany. (4.17) 

The heavier phase is driven away from an outwardly inclined wall, and a particle-free 
layer appears there. An order-of-magnitude analysis shows that this layer is thin and 
inviscid if B//3 < 1 and I E I = O(l),  and can be joined to the mixture core by an even 
thinner viscous sublayer. Since the mass flux in this sublayer is negligibly small, only 
clean fluid is transported from the core to the boundary layers, so that 

j , .n = 0 

is the approximate condition at  the wall. (A similar result was derived and used by 
Schneider (1982).) This can be written as 

n- (a j+$(a ) r i )  = 0; (4.18) 

j,, -jzo cot y = 0 on z = -$H- (1 - r )  tan y ,  

for conical lids of inclination y (figure 5 )  

(j,,+@ r )+ j ,  cot y = o 
a, 

on z = -!$I+ (1 -r) tan y ,  and 

(4.19) 

(j,, + @ r )  - j,, cot y = o 
"0 

on z = ; H - ( l - r )  tany. 

(4.20) 
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z=tH-(l-r)tany 
f 

‘t 

‘ z = -&H+(1 - r )  tany 

FIQURE 5. The geometry of conical outwardly inclined lids. 

Since the inclination angle y is independent of the azimuthal coordinate 8 ,  the local 
values ofjTo andj,, can be replaced by the averages (j,J and (j,J in (4.16), (4.17) 
and (4.19), (4.20). 

The formulation of the basic problem is complete and the subscript 0 will be 
dropped from here on. 

The substitution of (4.14) into the boundary conditions (4.16), (4.17) and (4.19), 
(4.20) yields two differential equations of the form 

where 

Q&[z ( r )  ($)+rC(r , t )  1 coty+ar2 - a 

Q =).<A> ; 
(4.21) 

here z(r)  is the boundary surface of inclination y ,  and c is 0 and 1 for inward- and 
outward-inclined walls. These equations must be solved in conjunction with the 
reduced form of the volume-fraction equations 

(4.22) 

subject to the boundary conditions 

Q = 0 at r = 1-8(t), 

where a = a, a t  t = 0. (The initial conditions onj, cannot be satisfied, because inertial 
terms, which are important for small t ,  have been neglected.) 

Some illustrative results can be obtained when, to leading order, a = a(t) ,  which 
holds along the characteristics of (4.22). It follows that 

(4.23) 

The first configuration to be considered has symmetrically diverging inclined lids 
(figure 6). Mirror symmetry about the z-plane requiresj, = 0 at  z = 0. The constant 
C in (4.14) is zero, and the substitution for ( j z )  in (4.19) or (4.20) yields 

(4.24) 
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FIGURE 6. Cross-section of a z-symmetric container with outwardly inclined lids. 

where b = +H cot y-  1 3 -ri, 

and 

The solution of (4.24) that satisfies the boundary condition (4.16) is 

[l - ~ S ' ( t ) ] ~ - r ~  
r + b  I 

so that the averaged radial velocity of the dispersed phase is 

(4.26) 

(4.26) 

The first term in the parenthesis is just the basic settling velocity in a centrifugal 
force field, while the second arises from the flow caused by the inclined boundaries. 
For b = O(1) both terms are comparable, since the width 8(t) of the sediment layer 
is small for the most part. In  a long cylinder or for small inclination angles the 
geometrical parameter b is large, and the 'Boycott effect ' diminishes accordingly. 
(The theory is probably invalid for large inclinations implied by b+-ri, especially 
in the proximity of ri.) 

The fact that Q > 0 at r = ri implies an injection into the centre of clean fluid 
returning on the outward inclined boundaries. This flux apparently occurs even for 
ri +. 0, which indicates that a pure-fluid core forms when no inner cylinder is present, 
provided b is small. (Again the validity of the present analysis is questionable for 
small rl.) 

The velocity U of the shock that is the surface of the outer sediment layer is 
determined from the continuity of volume flux : 

(4.27) a(uD- U )  = - Ua,  at r = 1 -h'(t) 

(where uD = (uD)). But at this position uD = A(t)  r = r$(a)/a,  so that 

(4.28) 
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(4.29) 

The velocity of the shock that separates the mixture from the region of purified 
fluid is simply the velocity uD of the particles that were on the inner solid wall r = ri 
at t = 0. Consequently the azimuthally averaged position of this shock is defined by 

(4.30) 

with R = ri at t = 0. Integration of the system of equations (4.23), (4.26), (4.29) and 
(4.30) produces the main features of this time-dependent separation process. 

A rough comparison can be made of the separative efficiency of two sectioned 
containers of the type shown in figure 6. Containers A and B have identical volumes 
V ,  as well as inner and outer radii, with lids that are uninclined (y = 0) and inclined 
(y 9 0) respectively. Obviously the heights of containers A and B are properly 
adjusted, with HB > HA. 

The volume of separated heavier phase at time t is 2nHaM 8(t) and the initial total 
bulk of this constituent in the mixture is aI V .  The separated fraction F(t )  is, assuming 
a thin sediment layer, 

aM F(t)  = - 2xH -. 
a1 V 

(4.31) 

In view of (4.29), the thickness of the sediment layer S( t )  is the same in both 
containers. so that 

(4.32) 

where the subscripts refer to the specific containers. The improvement ratio is a 
constant larger than 1,  which has a maximum value when y = tan-l [ H / 2 (  1 - ri)] of 
3(1+ri)/(2+ri) < 2. If ri is small then FB/FA < 1.5. 

The second configuration to be discussed is a container of constant height between 
parallel inclined lids of inclination angle y (figure 7). 

The substitution of (4.14) into (4.16) and (4.20) yields 

-[(At Q )  ($H+ (1  - r )  tan y)  +C(r ,  t )  
r ar 

-[(::Q) ( - iH+(l-r) tany)+C(r , t )  coty+-+-r=O. Q $(a) (4.34) 1 r a  

The result of subtracting (4.33) from (4.34) is 

(: 2 Q )  H cot y +- $(a)  r = 0. 
a 

The solution accounting for the boundary condition (4.15) is 

A ( t )  ([l -&(t)13-r3), ' = 3H cot y 

(4.35) 

(4.36) 

where A(t)  = $(.)/a. The averaged radial velocity of the dispersed phase is therefore 

(4.37) 
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FIGURE 7. Cross-section of a container of constant height with inclined lids. 

4H cot y 00 1 .o 0.5 0.2 0.1 
FBIFA 1 1.16 1.28 1.61 2.11 
t 1.50 0.87 0.68 0.44 0.30 

TABLE 1 

As in the previous case, the last term in (4.37) is the enhanced settling, due to the 
inclined boundaries. Its contribution is significant for short containers with steeply 
inclined lids, and is negligibly small for long containers or small inclination angles. 
Additional details of the separation process can be calculated as indicated for the 
previous case. 

Separative performance can again be compared for sectioned containers A and B 
of identical volume, the same inner and outer radii but with uninclined and inclined 
lids. (Note that here casings A and B now have the same height.) The volume of the 
dispersed phase in the mixture, which was initially aI xH(  1 - rr),  is at time t reduced 
to a ( t ) x ( l  -R2(t)) ,  where R(t) is the position of the shock between the mixture and 
the clean fluid given by (4.30). The fraction of the dispersed phase that has separated 
out from the mixture at any time is then 

a(t) l -R*( t )  
aI 1-rf ' 

F(t) = 1 -- (4.38) 

The ratio a(t)/aI is the same for both containers, and in the dilute limit aI -+O, which 
is considered here for simplicity, its value is exp ( - 2t ) .  

The improvement ratio FB/FA is a function oft in this case. To illustrate the effect 
of the inclined lids this ratio is evelusted at  time i, when FB(t)  = 0.95, for containers 
with ri = 0. Typical values are given in table 1. 
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5. Conclusions 
The time-dependent separation process in a large rotating cylindrical container 

with inclined lids has been considered under the assumptions that inertial forces are 
negligible and viscous shear is important only in boundary layers. In  axisymmetric 
containers, the Coriolis acceleration dominates the motion in the core, where there 
can be no radial mass flux. In this case, the geometry of the endcaps cannot much 
affect the basic sedimentation velocity of any interior particle. Moreover, the pure-fluid 
layer expands as the particles on the interface settle. The wall area available for 
particle collection also decreases significantly with time which essentially eliminates 
the basis of the Boycott effect. The strong buoyancy force in the growing pure-fluid 
layer is balanced by the centrifugal pressure gradient that arises from the production 
of vortical motions in different regions of the mixture. , 

In  gravitational settling, the pure fluid is confined to a thin boundary layer where 
buoyancy can be balanced by shear forces. Very much the same is true for settling 
in a sectioned cylinder in which there is insignificant relative rotation of the fluid 
because the azimuthal motion is physically blocked. The Coriolis force is then 
unimportant and dynamical equilibrium once again requires strong shear in a thin 
jet to counteract local buoyancy. 

The motion in the sectioned cylinder is controlled by the boundary layers on the 
lids. When the mass flux of the dispersed component is negligibly small in these layers, 
the inclination of the lids can enhance the separation in a manner similar to that in 
a gravitational field. The azimuthal pressure gradient in the core sustains a large 
z-independent radial velocity; the volume fraction depends on r and t ,  and the 
thickness of the sediment layer on the sidewall is a function of t  only. 

The Boycott effect in gravitational sedimentation is usually, and correctly, 
attributed to an increase of settling area and a shortening of settling distances. The 
pure-fluid layer that forms is in this view secondary. For centrifugal settling, how- 
ever, the reverse is the more accurate generalization: unless a pure-fluid layer forms 
in a container, little or no geometrical enhancement of settling can occur. 

In general, centrifugal settling in a container is essentially unaffected by shape 
whenever the Coriolis force is dominant. Geometrical enhancement of settling 
depends then on the extent to which this force can be counteracted. Practical methods 
to do this would make use of large shear forces between closely spaced plates (Bark 
& Johansson 1982) or with meridional sections as described here. 

Although the present work deals with batch rather than continuous processing, the 
main conclusions have rather obvious application to centrifuge design. This will be 
discussed separately. 

Appendix 

rized below : 
Some useful kinematic relations between velocities and volume fluxes are summa- 

q R  = qD-qCy (A 1) 

( l + e a ) q  = (l--)qC+"(1+6)qD, (A 2) 

a( l+e)  
4c = 4 - K  4 R  3 
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j = q D  + (1 q C ,  (A 5 )  

a(1-a) 
1 + E a  

J = q-E-  qFl> 

a(l -a) 
1 +ea  j ,  = aq+- qR 9 
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